Clustering Gene Expression Data using a Regulation based Density Clustering
نویسندگان
چکیده
We present a density based method for clustering gene expression data using a two-objective function. The method uses regulation information as well as a suitable dissimilarity measure to cluster genes into regions of higher density separated by sparser regions. The method has been tested on five benchmark microarray datasets and found to perform well in terms of homogeneity and z-score measures.
منابع مشابه
Modification of the Fast Global K-means Using a Fuzzy Relation with Application in Microarray Data Analysis
Recognizing genes with distinctive expression levels can help in prevention, diagnosis and treatment of the diseases at the genomic level. In this paper, fast Global k-means (fast GKM) is developed for clustering the gene expression datasets. Fast GKM is a significant improvement of the k-means clustering method. It is an incremental clustering method which starts with one cluster. Iteratively ...
متن کاملخوشهبندی دادههای بیانژنی توسط عدم تشابه جنگل تصادفی
Background: The clustering of gene expression data plays an important role in the diagnosis and treatment of cancer. These kinds of data are typically involve in a large number of variables (genes), in comparison with number of samples (patients). Many clustering methods have been built based on the dissimilarity among observations that are calculated by a distance function. As increa...
متن کاملAssessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملCoherent Gene Expression Pattern Finding Using Clustering Approaches
Analysis of gene expression data is an important research field in DNA microarray research. Data mining techniques have proven to be useful in understanding gene function, gene regulation, cellular processes and subtypes of cells. Most data mining algorithms developed for gene expression data deal with the problem of clustering. The purpose of this thesis is to study different clustering approa...
متن کاملImprovement of density-based clustering algorithm using modifying the density definitions and input parameter
Clustering is one of the main tasks in data mining, which means grouping similar samples. In general, there is a wide variety of clustering algorithms. One of these categories is density-based clustering. Various algorithms have been proposed for this method; one of the most widely used algorithms called DBSCAN. DBSCAN can identify clusters of different shapes in the dataset and automatically i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009